記号の世界ゟ

このブログでは, 数学書などの書評を書きます。また、受験などの勉強法をまとめます。

解けるの三様~可積分系を学ぶ際の注意点~

数学において、「~は解ける」「~は解けないと証明されている」などと気軽に言われます。例えば、「三体問題は解けないと証明されている」などです。しかし、「解ける」はいろんな意味で使われることが多く、定義を確認しておかないと、ほぼ情報のない文章になりがちです。

今回は可積分系の分野での「解ける」についてまとめます。根拠がある話ではなく、単に自分の感覚に基づいた説明なので、勉強や研究で使う際には鵜呑みにせず自分なりに考えながら参考にしてください。違和感を感じた場合、逆に、この分類にない考え方を発明してみていただけると面白いかと思います。

「解ける」の三様

今回は微分方程式を扱います。(広い意味での)可積分系あるいは力学系の文脈において、「解ける」は以下の三つのうちいずれかを意味していることが多いです。

(I) 微分方程式自体がいい構造を持つ
(対称性、ラックス形式など)
(II) 解自体がいい性質を持つ
(運動が単純、パンルヴェ性を持つなど)
(III) 解の形が陽に書ける
(初等関数で書けるなど)

可積分系とはこの三つの意味の関係性を調べる分野と捉えてもいいと思います。また、これら三つを混同すると、定理を間違えて解釈してしまうことがあります。これらについて、一つずつ説明していきます。注意として、(I) (II) (III)についても、それぞれで具体的に何を意味するかは状況に応じて定義が必要であることを覚えておいてください。(I) (II) (III)は考え方の分類なのです。

(I) 微分方程式自体がいい構造を持つ

強烈にいい構造を持つ微分方程式は「解ける」と言うことがあります。現在の可積分系の分野は主にここに属していると言っていいでしょう。例えば、「解ける」方程式は背後にある構造を使うことで、線形の方程式に帰着できることが多いです。『可積分系の数理』の中では、中村先生が可積分系の本質を「ビルトインされた線形性」と呼んでいます。詳しく知りたい人にはこの本がオススメです。

具体例として、ハミルトン系の完全可積分性を挙げましょう。ハミルトニアン  H を持つ自由度  m のハミルトン系が完全可積分であるとは、 H を含めた  m 個の関数の組  H_1 (= H), H_2, \dots, H_m が存在して、それぞれがポアソン可換、つまり、 \{ H_i, H_j \} = 0 が成り立つことを言います。 ざっくり言えば、十分な個数のハミルトン系による対称性を持つ、ということができます。

「三体問題が解けない」というポアンカレの証明は、この意味での解けないです。(しかも、細かく言えば、  H_1, H_2, \dots, H_m にもかなり特殊な仮定をおいたものであり、けっこうややこしい。)つまり、「対称性が十分にない」ということを証明しただけであり、「解が複雑」とか「解が書けない」ことを証明したわけではありません。ここを勘違いしている人が多いのですが、まさに三様の混同が原因なんだと思います。残りの概念も見てみましょう。

(II) 解自体がいい性質を持つ

具体例として「解が単純」であることを「解ける」と言うことがあります。逆に、「解が複雑である(カオス)」ことを「解けない」と言うことがある、の方がピンとくるのではないでしょうか?カオスも様々な定義があることに注意してください。

力学系におけるLiouville-Arnoldの定理は、(I)の意味で「解ける」なら(II)の意味で「可積分」であることを主張するものだと捉えることができます。Liouville-Arnoldの定理は、ざっくり言うと、完全可積分なハミルトン系は、トーラス上の線形運動に帰着される、という定理です。線形運動は非常に単純なので(II)の意味で解けることを意味します。(とはいえ、異なるトーラスとの関係は自明ではなく、運動の考察が終わるわけではない。)

三体問題で言えば、(I)の意味で解けないことの証明がされていますが、Liouville-Arnoldの定理を用いても(II)の意味で解けないこと、つまり、解が簡単ではないことを意味するわけではないことに注意してください。しかし、Liouville-Arnoldの定理の対偶を用いれば、解が複雑(カオス)であれば(I)の意味で解けないことが導かれることになります。このように、(I)と(II)の関係だけでもけっこう面白いことが言えるのです。

パンルヴェ方程式の解がパンルヴェ性を持つ」も(I)と(II)の関係を主張するものだと思えます。パンルヴェ方程式について詳しく説明しません。一から勉強するなら岡本和夫『パンルヴェ方程式』がオススメです。他にも新しい本があるのですが、問題意識とか考え方が納得できるように書かれた本は岡本先生の本を除いてないと感じています。(今後に期待!)

(III) 解の形が陽に書ける

たとえば、 \int e^{-x^2} dx は初等関数で書けない、というのは有名だと思います。(この事実については過去の記事で何度も触れています。)このように、解自体が知っている関数で書けるときに、「解ける」と表現することがあります。解の存在定理により、(普通の)微分方程式は局所的には解が存在します。しかも、局所的には微分方程式は線形方程式に帰着することもできます(flow box theorem)。なので、解が「どのような形で書けるか」が常に重要な問題となります。しかし、初等関数や既知関数はかなり人間の捉え方に依存しており、数学として綺麗ではなく、あまり発展していない分野だと思います。

とはいえ、(I)と(III)の関係を研究する分野として「微分ガロア理論」が存在します。微分ガロア群は微分方程式の対称性を表すものであり、(I)に位置するものだと言えます。線形微分ガロア理論の有名な定理として、微分ガロア群(の単位成分)が可換なら、解は初等関数で書ける、という定理があります。つまり、(I)ならば(III)を表す定理です。この定理を応用することで、「 \int e^{-x^2} dx は初等関数で書けない」も証明できます。(実は微分ガロア理論を使わない証明の方が普通。)

最後に

この記事の目的は、「解ける」にまつわる勘違いの原因を解明し、今後間違えないように分かりやすい視点を提供することでした。また、上の説明を読むだけでも、さまざまな数学の研究が(I)(II)(III)の関係を調べているものであることも知ることができるでしょう。今回の捉え方で理解できる他の具体例があればぜひ教えておしいです(できればTwitterで)。また、読者の誰かが(I)(II)(III)の新たな関係を発見し、新たな結果を出していただけると嬉しいです。あるいは、今回の記事を否定し、(I)(II)(III)の関係性に囚われない新しい視点を提示し、新しい数学の分野を開拓してもらえるともっと嬉しいです。