記号の世界ゟ

このブログでは, 数学書などの書評を書きます。また、受験などの勉強法をまとめます。

位相性と正則性

位相空間を一般化した収束空間はもちろん位相空間とは限りません.では,位相的であるという性質は何を意味するのでしょうか.実は,正則性の条件の類似であることが知られています.今回はこのことを紹介します.この記事では基本的に以下の記事の知識を仮定します.
tetobourbaki.hatenablog.com

収束空間と位相性(復習)

まず,収束空間の定義を復習する.

定義1(収束空間)

集合  X収束空間であるとは,各点  x \in X に対して、フィルターの集合  \lambda (x) が定まっており以下が成り立つことをいう:

(i) 任意の  x \in X に対して, \langle x \rangle \in \lambda (x) が成り立つ.

(ii) フィルター  \mathcal{F} \in \lambda (x)  \mathcal{F} \subset \mathcal{G} が成り立つなら  \mathcal{G} \in \lambda (x) が成り立つ;

(iii) フィルター  \mathcal{F}, \mathcal{G} \mathcal{F}, \mathcal{G} \in \lambda (x) ならば,フィルター  \mathcal{F} \cap \mathcal{G} \in \lambda (x) が成り立つ.

 \mathcal{F} \in \lambda (x) のとき, \mathcal{F} x収束するといい  \mathcal{F} \to x と表す.

(注意)以下の議論では(iii)を弱めた

 \quad (iii) ^\prime フィルター  \mathcal{F} \mathcal{F} \in \lambda (x) ならば,フィルター  \mathcal{F} \cap \langle x \rangle \in \lambda (x) が成り立つ.

でも十分である.

以下で重要になる近傍フィルター,閉包作用素,開核作用素を確認する.
近傍フィルター

 \quad \mathcal{V} (x) := \{ A \subset X \mid \mathcal{F} \to x ならば  A \in \mathcal{F} \}

閉包作用素

 \quad \mathrm{Cl} (A) := \{ x \in X \mid \mathcal{F} \mathcal{F} \to x かつ  A \in \mathcal{F} となるものが存在する \}

開核作用素
 \quad \mathrm{I} (A) := \{ x \in X \mid \mathcal{F} \to x ならば  A \in \mathcal{F} \}

ちなみに,

 \quad \mathcal{V} (x) = \{ A \subset X \mid x \in \mathrm{I} (A) \}

と書けることは重要である.

次に,収束空間が位相的であるための条件を確認しよう.

命題2(位相空間

収束空間が位相的であるためには以下の二つの条件が成り立つことである:

(i) 前位相的である,つまり,近傍フィルター  \mathcal{V} (x) x に収束する.

(ii) 任意の  x A \in \mathcal{V} (x) に対して,ある  B \in \mathcal{V} (x) が存在して全ての  y \in B A \in \mathcal{V} (y) が成り立つ.

正則空間

これまでの記事では分離公理について触れてこなかった.収束空間で正則性を定義するには閉包を用いる.

補題
フィルター  \mathcal{F} に対して,
 
\quad \mathrm{Cl} (\mathcal{F}) := \{ \mathrm{Cl} (A) \subset X \mid A \in \mathcal{F} \}
とすると, \mathrm{Cl} (\mathcal{F}) はフィルター基である.これをフィルター  \mathcal{F} の閉包と呼ぶ.

簡単なので証明は省略する.一般に, \langle \mathrm{Cl} (\mathcal{F} ) \rangle \subset \mathcal{F} なので,フィルターの閉包を取ると粗くなる.正則性とは,収束するフィルターの閉包をとって粗くしても,やはり収束するということである.


定義4(正則)

位相空間  X正則であるとは,全てのフィルター  \mathcal{F} に対して  \mathcal{F} \to x ならば \mathrm{Cl} ( \mathcal{F} ) \to x となることである.

さて,正則性は位相空間においてよく知られた定義と一致することが知られている.その他にもほとんど普通に想像する正則性と一致することが知られているがこの記事では省略する.

位相性と正則性の対比

さて,位相的であることを正則の定義に類似した形で与えよう.そのために,天下り的であるがフィルターの閉包から着想を得た以下の作用素を考えよう.

定義5(近傍化フィルター)

フィルター  \mathcal{F} に対して,
 
\quad \mathrm{V} (\mathcal{F} ) := \{ A \subset X \mid \mathrm{I} (A) \in \mathcal{F} \}
を フィルター  \mathcal{F}近傍化フィルターと呼ぶ*1

近傍化フィルターが実際にフィルターであることや  \mathrm{V} (\mathcal{F}) \subset \mathcal{F} が成り立つのことはすぐに分かる.これを用いると,正則性と全く同様の形式で位相性を特徴付けることができる.

主定理6

収束空間  X に対して, X が位相的であることと,全てのフィルター  \mathcal{F} に対して  \mathcal{F} \to x ならば  \mathrm{V} (\mathcal{F} ) \to x が成り立つことは同値.

主定理を証明するために,いくつかの性質を見ていく.唐突に出てきた近傍化フィルターではあるが,これを用いればいろんな性質を表すことができる.

補題
収束空間において, \mathrm{V} (\langle x \rangle) = \mathcal{V} (x) である.

証明. A \in \mathrm{V} ( \langle x \rangle )  \Leftrightarrow \mathrm{I} (A) \in \langle x \rangle \Leftrightarrow x \in \mathrm{I} (A)
\Leftrightarrow A \in  \mathcal{V} (x) \quad \square

この補題が,近傍化フィルターという用語の由来である.

次に,近傍の開核が近傍であるという位相空間の性質に注目しよう.これは, A \in \mathcal{V} (x) ならば, \mathrm{I} (A) \in \mathcal{V} (x) ということであるが,これは以下のように近傍化フィルターを用いて書き換えることができる.

補題
収束空間において以下の性質は同値:

(i)  A \in \mathcal{V} (x) ならば, \mathrm{I} (A) \in \mathcal{V} (x) ;

(ii)  \mathrm{V} (\mathcal{V} (x)) = \mathcal{V} (x)

証明.一般に \mathrm{V} (\mathcal{V} (x)) \subset \mathcal{V} (x) は成り立つので,(ii) は  \mathrm{V} (\mathcal{V} (x)) \supset \mathcal{V} (x) である.同値性の証明は定義通りの言い換えであるので機械的に示せる. \square

上の二つの補題が近傍化フィルターの役割を表している.さらに,上の事実で位相的であることを特徴付けることはほとんど終わっている.まず,前位相的であることは  \mathcal{V} (x) \to x であるが,これは  \mathrm{V} (\langle x \rangle) \to x である.最後に次の単純な結果がギャップを完全に埋める.

補題

収束空間において,補題8の(ii)  \mathrm{V} (\mathcal{V} (x)) = \mathcal{V} (x) が成り立つならば,命題2の(ii) が成り立つ.

(証明)任意の  A \in \mathrm{V} (x) をとると,仮定により  \mathrm{I} (A) \in \mathrm{V} (x) である.そこで, W = \mathrm{I} (A) とすると, y \in W に対して, y \in \mathrm{I} (A) なので  A \in \mathcal{V} (y) である.よって命題2の(ii)が成り立つことが分かった. \square

補題 10
収束空間  X において以下は同値:

(i)  X は位相的;

(ii)  \mathrm{V} (\langle x \rangle ) \to x かつ  \mathrm{V} (\mathcal{V} (x)) = \mathcal{V} (x);

(iii)  \mathcal{F} \to x ならば  \mathrm{V} (\mathcal{F} ) \to x

(証明)
(i)  \rightarrow (ii)について.位相的なら前位相的なので  \mathrm{V} (\langle x \rangle ) = \mathcal{V} (x) \to x.また,位相空間において補題8の条件が成り立つことは知られているので  \mathrm{V} (\mathcal{V} (x)) = \mathcal{V} (x) が成り立つ.

(ii)  \rightarrow (i)について.  \mathcal{V} (x) = \mathrm{V} (\langle x \rangle ) \to x なので前位相的.補題9より命題2の(ii)が成立するので,命題2により, X位相空間

(ii)  \rightarrow (iii)について.  \mathcal{V} (x) = \mathrm{V} (\langle x \rangle ) \to x なので前位相的である. \mathrm{F} \to x とすると  \mathcal{V} (x) \subset \mathcal{F} なので  \mathrm{I} (\mathcal{V} (x)) \subset \mathrm{I}(\mathcal{F}) である. \mathrm{V} (\mathcal{V} (x)) = \mathcal{V} (x) なので, \mathcal{V} (x) \subset \mathrm{I} (\mathcal{F}) となり \mathrm{V}(\mathcal{F}) \to x である.

(iii)  \rightarrow (ii)について.収束空間の定義から, \langle x \rangle \to x なので,  \mathrm{V} (\langle x \rangle ) \to x である.また,これから  \mathcal{V} (x) = \mathrm{V} (\langle x \rangle ) \to x なので前位相的であり  \mathrm{V} (\mathcal{V} (x)) \to x となるので, \mathrm{V} (\mathcal{V} (x)) \supset \mathcal{V} (x) となる. \square

この補題により主定理が示せた.

まとめと参考文献

今回の記事で位相的であることと正則であることが同じ形式で特徴付けることができると分かった.一般的には"Compression operator"と呼ばれるものを用いた"diagonal"性により位相的であることと正則であることを関連づけることが多い.歴史的にはこの方法が先であるものの,そういうやり方はちょっと複雑なので今回の記事では

Scott, Wilde and Kent, "p-Topological and p-regular: dual notions in convergent theory"

の方法を参考にした.例えば,

Brock and Kent,"Probabilistic convergence spaces and regularity"

では,収束空間,正則収束空間,位相空間のなす圏をそれぞれCONV,RCONV,TOPとしたとき

It is well known that both RCONV and TOP are bireflective subcategories of CONV, since the properties "regular" and "topological" are both preserved under formulation of initial structures.

であると述べている.これが最も興味のあるところなのであるが,残念ながら圏論が苦手なこともありまだ理解するには至ってない.

*1:原論文に忠実になるなら,「フィルターの近傍フィルター」と呼ぶべきではあるが,近傍フィルターとややこしいので近傍"化"フィルターと呼ぶことにする.

収束空間について

位相空間をフィルターを使って論じたブログに反響がありました.特に,位相空間を一般化した前位相空間について知りたいという声がありました.位相空間が一般化できるとは思いもしなかった人がかなりいるのではないかと思います.

tetobourbaki.hatenablog.com

この記事では,フィルターの収束が定義されている収束空間まで位相空間を一般化します.いきなり一般的な定義を紹介してもしっくりこないと思うので,

 \qquad 位相空間→前位相空間→ショケ空間→収束空間

の順に少しずつ一般化していきます.収束空間を使うと説明がしやすいので,具体例は収束空間を導入した後に述べます.単なる一般化ではなく,収束空間の概念をベースにして位相的な性質を議論すると分かりやすいと感じていただければ嬉しいです.

位相空間

まず,位相空間とフィルターについて,この記事の前提知識を復習しておく.(前のブログを読んだ方やフィルターで位相空間を論じることに詳しい方は次節から読むと良い.)

定義1(位相空間

集合  X位相空間であるとは,各点  x \in X に対して、X の部分集合からなる空でない集合族  \mathbf{V} (x)が存在して以下が成り立つことをいう:

(i) すべての  V \in \mathbf{V} (x) に対して, x \in V;

(ii)  V \in \mathbf{V} (x) かつ  V \subset W ならば  W \in \mathbf{V} (x);

(iii)  V, W \in \mathbf{V} (x) ならば  V \cap W \in \mathbf{V} (x);

(iv) すべての  V \in \mathbf{V} (x) に対して、ある  W \in \mathbf{V} (x) が存在して、すべての  y \in W に対して  V \in \mathbf{V} (y)

 \mathbf{V} (x) x近傍系という.

定義2(フィルター)

集合  X に対して, Xの部分集合からなる空でない集合族 \mathcal{F}フィルターであるとは,以下が成り立つことをいう:

(i)  \emptyset \notin \mathcal{F}

(ii)  V \in \mathcal{F} かつ  V \subset W ならば  W \in \mathcal{F};

(iii)  V, W \in \mathcal{F} ならば  V \cap W \in \mathcal{F}

二つのフィルター  \mathcal{F}, \mathcal{G} に対して, \mathcal{F} \subset \mathcal{G} が成り立つとき, \mathcal{F}\mathcal{G} よりも粗い,または, \mathcal{G} \mathcal{F} よりも細かいなどという.

フィルター  \mathcal{F}極大フィルターであるとは,フィルター  \mathcal{G} に対して, \mathcal{F} \subset \mathcal{G} ならば  \mathcal{F} = \mathcal{G} が成り立つことを言う.

定義3(フィルターの収束)

位相空間 X におけるフィルター  \mathcal{F} が点  x \in X収束するとは, xの近傍系  \mathbf{V} (x) よりも  \mathcal{F} が細かいこと,つまり, \mathbf{V} (x) \subset \mathcal{F} が成り立つことをいう.
 \mathcal{F} x\in X に収束するとき,x \mathcal{F}極限点という.

定義4(フィルター基)

集合  X に対して, Xの部分集合からなる空でない集合族 \mathcal{B}フィルター基であるとは,以下が成り立つことをいう:

(i)  \emptyset \notin \mathcal{B}

(ii)  V, W \in \mathcal{B} ならば,ある  U \in \mathcal{B}が存在して  U \subset V \cap W

フィルター \langle \mathcal{B} \rangle := \{ V \subset X \mid ある  W \in \mathcal{B} が存在して  W \subset V\}  \mathcal{B} で生成されるフィルターと呼ぶ.

 \mathcal{B} で生成されるフィルター  \langle \mathcal{B} \rangle x\in X に収束するとき,フィルター基  \mathcal{B}  x収束すると言う.

定義5(連続関数)

位相空間  X, Y と関数  f \colon X \to Y に対して, f x \in X連続であるとは, x に収束する  X における全てのフィルター  \mathcal{F} に対して,フィルター基  f(\mathcal{F}) f(x) に収束することである.

定義6(コンパクト)

位相空間  Xコンパクト であるとは,任意の極大フィルターが極限点を持つことである.

定義7(ハウスドルフ)

位相空間  Xハウスドルフであるとは, X における任意のフィルターが高々1つしか極限点を持たないことをいう.
(つまり,フィルターが2つ以上の極限点を持たない空間がハウスドルフ空間である.)

以降,位相空間を一般化していくのであるが,上記の定義ではフィルターの収束のみを使っている.よって,フィルターの収束さえ定まっていれば,例えば連続写像やコンパクト性が同様に定義できる.以降,フィルターの収束を使って定義できる概念はフィルターの収束さえ定まれば同様に定義できるが,この記事ではフィルターの収束が定まっている空間のみを扱うので,一般化した空間でも同様に定義されていくものとして理解せよ.

位相空間

位相空間を一般化する.特に,フィルターの収束さえ定まればいいので,近傍系の公理(iv)は必要ない.公理(iv)を要請しない空間を前位相空間と呼ぶ.

定義8(前位相空間

集合  X位相空間(pretopological space)であるとは,各点  x \in X に対して、X の部分集合からなる空でない集合族  \mathbf{V} (x)が存在して以下が成り立つことをいう:

(i) すべての  V \in \mathbf{V} (x) に対して, x \in V;

(ii)  V \in \mathbf{V} (x) かつ  V \subset W ならば  W \in \mathbf{V} (x);

(iii)  V, W \in \mathbf{V} (x) ならば  V \cap W \in \mathbf{V} (x);

位相空間  X におけるフィルター  \mathcal{F} x収束するとは, \mathbf{V} (x) \subset \mathcal{F} が成り立つことをいう.
 \mathbf{V}フィルター場という.

位相空間でも閉包や閉集合を考えたいが,それらの性質は位相空間と違ってくる.

定義9(擬閉包作用素

集合  X に対して,部分集合から部分集合への関数  \mathrm{Cl} \colon 2^X \to 2^X擬閉包作用素
 \displaystyle
\quad \mathrm{Cl} (A) := \{ x\in X \mid あるフィルター  \mathcal{F} が存在して, A \in \mathcal{F} かつ  \mathcal{F}x に収束する  \}
と定める.

命題10

位相空間  X に対して,以下が成り立つ:

(i)  \mathrm{Cl} (\emptyset ) = \emptyset;

(ii) 任意の部分集合 A \subset X に対して,A \subset \mathrm{Cl} (A);

(iii) 任意の部分集合 A, B \subset X に対して,\mathrm{Cl}(A \cup B) = \mathrm{Cl} (A) \cup \mathrm{Cl} (B);

(注意.この命題は前位相空間を一般化しても成り立つ.)

ここで,位相空間とは違い  \mathrm{Cl} (\mathrm{Cl} (A) ) = \mathrm{Cl} (A) が成り立つとは限らない.しかし,閉集合はなぜかうまく定義できる.

定義11(開集合)

位相空間  X の部分集合  A閉集合であるとは, \mathrm{Cl} (A) =A が成り立つことである.

命題12

位相空間  X に対して,閉集合のなす集合を  \mathfrak{U} と表す.このとき,以下が成り立つ:

(i)  \emptyset \in \mathfrak{U} かつ  X \in \mathfrak{U};

(ii)  A, B \in \mathfrak{U} ならば  A \cup B \in \mathfrak{U};

(iii)  A_{\lambda} \in \mathfrak{U} ならば  \bigcap_{\lambda} A_{\lambda} \in \mathfrak{U}

この事実を私は以下のように捉えている.前位相空間でも閉集合は定義できる.位相空間と同じように考えるには, \mathrm{Cl} (A)閉集合であってほしい.しかし,上で述べたように  \mathrm{Cl} (\mathrm{Cl} (A) ) = \mathrm {Cl} (A) とは限らず,つまり, \mathrm{Cl} (A) 閉集合とは限らない.つまり,位相空間位相空間よりも閉集合が少ない空間である

(擬)開核作用素や開集合は補集合をとることで,(擬)閉包作用素閉集合から定義できる.ここは位相空間とまったく同じである.だから,前位相空間は開集合が少ない空間であると考えても良い.

このような観点に立つと,前位相空間の以下の事実も納得がいく.

命題13

位相空間  X, Y において,写像  f \colon X \to Y が連続ならば,開集合  A \subset Y の引き戻し  f^{-1} (A) \subset X は開集合である.

逆が成り立つとは限らない.

Proof. 閉集合  B \subset Y の引き戻し  f^{-1} (B) \subset X が閉であることを示せば良い.つまり, \mathrm{Cl} ( f^{-1} ( B) ) = f^{-1} (B) を示せばよい. \mathrm{Cl} ( f^{-1} ( B) ) \supset f^{-1} (B) は擬閉包の性質から分かっているので, \mathrm{Cl} ( f^{-1} ( B) ) \subset f^{-1} (B) を示す.  x \in \mathrm{Cl} (f^{-1} (B) ) とすると, X におけるフィルター  \mathcal{F}  f^{-1} (B) \in \mathcal{F} かつ  \mathcal{F} x に収束するものが存在する. f が連続なので, < f(\mathrm{F} ) >  f(x) に収束する.また,  f (f^{-1} (B)) \in f(\mathcal{F} ) かつ  f (f^{-1} (B) ) \subset B より   B \in \langle f (\mathcal{F} ) \rangle である.以上より, f(x) \in \mathrm{Cl} (B) であるが  B閉集合だったので  f(x) \in B である.よって  x \in f^{-1} (B) となり証明が終わる.

逆が成り立たないことは最後に例でみる.  \square

つまり,位相空間では開集合の引き戻しが開集合であることで連続性を定義するが,前位相空間では開集合が少ないので開集合を見ただけでは全ての点で連続かどうかが分からないのである.逆に言えば,開集合で連続性が定義できることこそ位相空間のよさだとも言える.前のブログでコンパクトからハウスドルフへの連続全単射同相写像であることを見たが,その証明で開集合による連続性の特徴付けを用いているため,一般の収束空間ではこの定理は成り立たない.

さて,前位相空間はフィルター場という基準を与えることでフィルターの収束を定めていた.単にフィルターの収束を与えるだけで空間を定義し一般化したいので,収束の性質をまとめてみる.

命題14

位相空間において,フィルター  \mathcal{F}  x に収束することと,  \mathcal{F} より細かい全ての極大フィルターが  x に収束することが同値.

Proof.任意のフィルターは極大イフィルターの共通部分として書けることが知られている.つまり
 \displaystyle
\qquad \mathcal{F} = \bigcap \{ \mathcal{G} \mid \mathcal{G} は極大フィルターで  \mathcal {F} \subset \mathcal{G} \}
が成り立つ.これと, \mathbf{V} (x) \subset \mathcal {F}  \mathcal{F}  x に収束することであったことからすぐにわかる. \square

この命題により,前位相空間において,フィルターの収束は極大フィルターの収束で決まってしまうことが分かる.

次に,極大フィルターの中でも唯一具体的に書ける主極大フィルターを導入する.

定義15(主極大フィルター)

集合  X と元  x \in X に対して,フィルター
 \displaystyle
\qquad \mathcal{F} := \{ A \subset X \mid x \in A \}
は極大フィルターである.これは  \langle \{x \} \rangle でもある.この極大フィルターを x の主極大フィルター と呼び, \langle x \rangle で表す.

位相空間の定義において,フィルター場の公理 (i) は  x の主極大フィルター  \langle x \rangle x に収束することを表している.

以上を踏まえれば,前位相空間を一般化できる.

ショケ空間

定義16(ショケ空間)

集合  Xショケ空間(Choquet space)であるとは,各点  x \in X に対して、極大フィルターの集合  \mu (x) が定まっており以下が成り立つことをいう:

(i) 任意の  x \in X に対して, \langle x \rangle \in \mu (x) が成り立つ.

極大フィルター  \mathcal{F} \mathcal{F} \in \mu (x) を満たすとき,極大フィルター  \mathcal{F} x収束するという.

ショケ空間においてフィルター  \mathcal{F} x \in X収束するとは, \mathcal{F} より細かい全ての極大フィルターが  x に収束することとする.

(注意.ショケ空間は擬位相空間(psudotopological space)と呼ばれることも多い.)

つまり,ショケ空間とは極大フィルターの収束を定めたものである.前節で述べたように,極大フィルターの収束さえ定めれば全てのフィルターの収束を定めることができる.

ショケ空間でも位相空間における近傍系や前位相空間におけるフィルター場のようなものを定めよう.

定義17(近傍フィルター)

ショケ空間  X とその元  x \in X において
 \displaystyle
\qquad \mathbf{V} (x) := \{ A \subset X \mid x に収束する全てのフィルター  \mathcal{F} A を含む  \}
と定める. \mathbf{V} (x)x における近傍フィルターと呼ぶ.

位相空間ではフィルター場により収束が定まったが,ショケ空間ではフィルターの収束が近傍フィルターで定まらない.

命題18

ショケ空間において,フィルター  \mathbf{F} x に収束するなら, \mathbf{V} (x) \subset \mathbf{F} が成り立つ.

逆が成り立つとは限らない.

証明は近傍フィルターの定義から明らか.

ショケ空間では  \mathbf{V} (x) より細かいフィルターが  x に収束するとは限らない.特に,近傍フィルター  \mathbf{V} (x) 自体が  x に収束するとは限らない.

さて,ショケ空間は極大フィルター収束により,全てのフィルターの収束を定めた.そうではなく,フィルターの収束を一気に定義したい.そのために,ショケ空間のフィルターの収束の性質を調べ,それによりフィルターの収束を公理化しよう.

命題19

ショケ空間  X において以下が成り立つ:

(a) フィルター  \mathcal{F} x に収束し, \mathcal{F} \subset \mathcal{G} が成り立つなら  \mathcal{G} x に収束する;

(b) フィルター  \mathcal{F}, \mathcal{G} x \in X に収束するなら,フィルター  \mathcal{F} \cap \mathcal{G} x に収束する.

Proof.(a)は明らか. \mathcal{F} \cap \mathcal{G} より細かい極大フィルターは, \mathcal{F}, \mathcal{G} よりも細かいので,(b) が分かる. \square

命題 (a) はこれまでも使っていたように,収束するものより細かいフィルターはやはり収束する.命題 (b) は収束する二つのフィルターより粗いものの中でもっとも細かいものが収束することを意味する。

収束空間

定義20(収束空間)

集合  X収束空間であるとは,各点  x \in X に対して、フィルターの集合  \lambda (x) が定まっており以下が成り立つことをいう:

(i) 任意の  x \in X に対して, \langle x \rangle \in \lambda (x) が成り立つ.

(ii) フィルター  \mathcal{F} \in \lambda (x)  \mathcal{F} \subset \mathcal{G} が成り立つなら  \mathcal{G} \in \lambda (x) が成り立つ;

(iii) フィルター  \mathcal{F}, \mathcal{G} \mathcal{F}, \mathcal{G} \in \lambda (x) ならば,フィルター  \mathcal{F} \cap \mathcal{G} \in \lambda (x) が成り立つ.

(注意.論文によってはこの空間を極限空間(limit space)と呼び,(iii)の条件をもう少し一般化したものを収束空間と呼んでいる.)

収束空間はショケ空間とは違い,極大フィルターの収束で全てのフィルターの収束が決まっているわけではない.コンパクト性は極大フィルターで定義されているので,ショケ空間でなければ成り立たない結果がいくつかある.

収束空間のまとめ

定義21

 X を収束空間とする.

(a)  X がショケ空間から定まる収束空間のとき, Xショケ的であるという.
(b)  X が前位相空間から定まる収束空間のとき, X前位相的であるという.
(c)  X位相空間から定まる収束空間のとき, X位相的であるという.

さらに,以下のことが簡単に分かる.

命題22

 X を収束空間とする.

(a)  X がショケ的であることと,フィルター  \mathcal{F} より細かい任意の極大フィルターが  x \in X に収束するなら  \mathcal{F} x に収束することが同値.

(b)  X が前位相的であることと,近傍フィルター  \mathbf{V} (x) x に収束することが同値.

(c)  X が位相的であることと,前位相的かつ任意の  A \subset X に対して  \mathrm{Cl} ( \mathrm{Cl} (A) ) = \mathrm{Cl} (A) が成り立つことが同値.

最後に,例を挙げる.自然な例を挙げるというよりは,本当に一般化した空間に入る例があることを確認することが目的である.

前位相的だが位相的でない例

実数体  \mathbb{R} に普通の位相を入れた収束構造を  \lambda とする.一方,収束構造  \nu
 x \neq 0 に対しては, \nu(x) = \lambda (x) とし,
 \displaystyle
\qquad \mathcal{F} \in \nu (0) : \Leftrightarrow "\mathcal{F} \in \lambda (0) かつ,全ての A \in \mathcal{F} に対して A \cap \mathbb{Q} \neq \emptyset"

と定める.つまり,0以外への収束は通常の同じで , x=0 に収束するには有理数体と交わり続けることも条件に加えたものが収束空間  (\mathbb{R}, \nu ) である.簡単のため,通常の収束構造を定めたものを単に  \mathbb{R} とし, (\mathbb{R}, \nu)\tilde{\mathbb{R} } と表す.

 \tilde{\mathbb{R} } は前位相空間である: これを見るには,近傍フィルターとの包含関係によりフィルターの収束が定めることを見れば良い. x \neq 0 は見る必要がないので, \nu (0) のみを見れば良い. \mathcal{F} \in \nu (0) \mathbf{V} (0) \subset \mathcal{F} が同値であることを見れば良いが, \mathbf{V} (0) \in \nu (0) を見れば十分である.  A \in \mathbf{V} (0) 0 に収束する全てのフィルターに含まれているので, A \cap \mathbb{Q} \neq \emptyset となる.また, \nu (0) \subset \lambda(0) より, \mathbf{V} (0) は普通の位相で収束する.よって, \mathbf{V} (0) \in \nu (0) である.以上により, \tilde{\mathbb{R} } は前位相空間である.

命題23
 \tilde{ \mathbb{R} } において,
 \displaystyle
\qquad \mathrm{Cl} (\mathbb{R} \setminus \mathbb{Q} ) = \mathbb{R} \setminus \{ 0 \}, \quad \mathrm{Cl} (\mathbb{R} \setminus \{0 \} ) = \mathbb{R}
である.特に, \mathrm{Cl} (\mathbb{R} \setminus \mathbb{Q} )閉集合でない.

Proof.収束構造  \nu により, \mathbb{R} \setminus \mathbb{Q} を元にもつフィルターは  0 に収束しないので, 0 \notin  \mathrm{Cl} (\mathbb{R} \setminus \mathbb{Q} ).一方, x \neq 0 が閉包に入るかどうかは通常と同じなので, \mathrm{Cl} (\mathbb{R} \setminus \mathbb{Q} ) = \mathbb{R} \setminus \{ 0 \} である.

主極大フィルター  \langle 0 \rangle を,この空間でも  0 に収束するように変形したフィルター

\qquad  \mathcal{F} := ( \{A \setminus \{0 \} \mid 0 \in A\} \cup \{A \} ) \setminus \emptyset
 0 に収束し, \mathrm{R} \setminus \{0 \} \in \mathcal{F} なので, 0 \in \mathrm{Cl} (\mathbb{R} \setminus \{0 \} ) である.よって, \mathrm{Cl} (\mathbb{R} \setminus \{0 \} ) = \mathbb{R} \square

ショケ空間だが前位相空間でない例

無限個の元を持つ集合を  X とする. X の極大フィルターの収束を,主極大フィルターが(任意の)  x \in X に収束し,主極大フィルター以外の極大フィルターは収束しないとして収束を定めたショケ空間を考える.まず, \mathbf{V} (p) = \{X \} であることが分かる.実際,  A \in \mathbf{V} (p) A \neq X となるものがあったとし  q \notin A をとると,主極大フィルター  \langle q \rangle p に収束するが,近傍フィルターの定義より  A \in \langle q \rangle となる.これは  q \notin A に矛盾.つまり, \mathbf{V} (p) = \{X \} である.このとき, \mathcal{F} x に収束することと, \mathcal{F}  \mathbf{V} (p) より細かいことが同値と仮定して矛盾を導く.ここで,フレシェフィルターと呼ばれるフィルター
 \displaystyle
\qquad \mathcal{N} := \{ A \subset X \mid X \setminus A が有限集合  \}
を考える. \mathcal{N} より細かい極大フィルターを  \mathcal{G} とする. X が無限集合であることから  \mathcal{G} は主極大フィルターではないことが分かる.一方, \mathcal{V} (p) \subset \mathcal{N} \subset \mathcal{G} となり.仮定から  \mathcal{G} は収束する.主極大フィルターではないフィルターが収束することになり矛盾.よって,仮定が間違っていたことになり,前位相的ではないことが分かる.

この収束空間の閉集合を調べよう.一点集合  \{ p \} の閉包を考える. q \in X を取ったとき,主極大フィルター  \langle p \rangle \{p \} を元に持ち  q に収束する.つまり任意の元が閉包に含まれるので, \mathrm{Cl} (\{p \}) = X となる.よって閉集合 \emptyset, X のみである.

さて,上と同じ  X に全ての極大フィルターが全ての点に収束するとして収束を定めたショケ空間を  \tilde{X} と表すことにする.すると,上と同様に  \mathbf{V} (p) = \{ \tilde{X} \} であり,閉集合 \emptyset, \tilde{X} のみとなる. X とは違い任意のフィルターが任意の点に収束するとしているので,前位相的であり,もっと言うと密着位相が入った位相空間である.

さて, \mathrm{id}\colon \tilde{X} \to X を考える. \tilde{X}, X閉集合は同じなので,開集合の引き戻しは開集合である.しかし, \tilde{X} のフィレシェフィルター  \mathrm{N} は収束するが,その像  \mathrm{id} (\mathrm{N} ) X で収束しない.よって, \mathrm{id} は連続でない.これは,開集合の引き戻しが開集合でも連続とは限らないことを意味する.これが命題13の例を与えている.

収束空間だがショケ空間でない例
 I := [0, 1] を通常の位相により定まる収束空間とし,  \mathcal{F} \in \nu (x)
普通の位相で  0 に収束する有限個の極大フィルター  \mathcal{G}_1, \dots, \mathcal{G}_n が存在して, \mathcal{F} \supset \mathcal{G}_1 \cap \dots \cap \mathcal{G}_n と定める.

収束空間であることは分かる.極大フィルターの収束性は通常と変わらない.普通の位相での近傍フィルターを  \mathbf{U} (x) をとる. \mathbf{U} (x) より細かい極大フィルターは普通の位相で  x に収束するので  \nu でも  x に収束する.一方, \mathbf{U} (x) より細かい極大フィルターは無限個あるので,  \nu \mathbf{U} (x) x に収束しない.よって,ショケ空間ではない.

位相空間論とフィルター

位相空間論の性質を論じるにあたって,フィルターが非常に便利です.この記事では,フィルターの使い方を解説します.


最初の節では,フィルターやフィルターの収束を定義します.位相空間の基本的な用語をフィルターで言い換えていきます.

次の節では,コンパクト性やハウスドルフ性に関する性質を見ていきます.特に,コンパクト空間の直積空間がコンパクトであるというチコノフの定理を証明します.

この記事の議論を見れば,今回の話は位相空間である必要はなくて単にフィルターの収束が決まっていればいいのではないかと思われると思います.実際にその通りで,位相空間を一般化した収束空間というものがあります.収束空間は少し難しいので,最後の節では位相空間より少しだけ一般化した前位相空間について解説します.前位相空間を勉強すると,位相空間の公理の理解も深まります.

(以下,口調が変わります.)

フィルターの収束

 X位相空間とする.位相空間は開集合や閉包作用素などいろいろな定義の仕方があるが,今回は近傍系によって定義しよう.

定義1(位相空間

集合  X位相空間であるとは,各点  x \in X に対して、X の部分集合からなる空でない集合族  \mathbf{V} (x)が存在して以下が成り立つことをいう:

(i) すべての  V \in \mathbf{V} (x) に対して, x \in V;

(ii)  V \in \mathbf{V} (x) かつ  V \subset W ならば  W \in \mathbf{V} (x);

(iii)  V, W \in \mathbf{V} (x) ならば  V \cap W \in \mathbf{V} (x);

(iv) すべての  V \in \mathbf{V} (x) に対して、ある  W \in \mathbf{V} (x) が存在して、すべての  y \in W に対して  V \in \mathbf{V} (y)

 \mathbf{V} (x) x近傍系という.

位相空間の定義は(iv)の性質だけ少し難しい.実はこれには深い意味がある.そのことは前位相空間の節で明らかになる.まず,近傍系の定義を一般化したものとしてフィルターを定義する.

定義2(フィルター)

集合  X に対して, Xの部分集合からなる空でない集合族 \mathcal{F}フィルターであるとは,以下が成り立つことをいう:

(i)  \emptyset \notin \mathcal{F}

(ii)  V \in \mathcal{F} かつ  V \subset W ならば  W \in \mathcal{F};

(iii)  V, W \in \mathcal{F} ならば  V \cap W \in \mathcal{F}

二つのフィルター  \mathcal{F}, \mathcal{G} に対して, \mathcal{F} \subset \mathcal{G} が成り立つとき, \mathcal{F}\mathcal{G} よりも粗い,または, \mathcal{G} \mathcal{F} よりも細かいなどという.

フィルターの性質(i)だけ近傍系の性質(i)と少し違うように見えるが,近傍系の性質(i)により空集合 \mathbf{V} (x) に含まれないので,近傍系はフィルターである.近傍系性質(iv)はどこに行ったのかと疑問に思うかもしれないが,(iv)は近傍系同士の関係を述べたものであるので,一点における近傍系の一般化としてフィルターを定義している.

さて,位相空間を論じるために必要なフィルターの収束を定義しよう.

定義3(フィルターの収束)

位相空間 X におけるフィルター  \mathcal{F} が点  x \in X収束するとは, xの近傍系  \mathbf{V} (x) よりも  \mathcal{F} が細かいこと,つまり, \mathbf{V} (x) \subset \mathcal{F} が成り立つことをいう.
 \mathcal{F} x\in X に収束するとき,x \mathcal{F}極限点という.

フィルターの収束により,位相空間を直感的に扱えるようになる.例えば,距離空間において,部分集合  A の閉包とは, A に値をとる点列の収束先を集めたものであった.これは位相空間では成り立たないが,フィルターで言い換えれば成り立つ.

命題4

位相空間  X において部分集合  A の閉包を  \overline{A} とするとき, x \in \overline{A} と, Xにおけるフィルター \mathcal{F} x に収束し A \in \mathcal{F} となるものが存在することは同値.

Proof.  x\in \overline{A}とする.すると, x の任意の近傍  V \in \mathbf{V} (x) に対して  A \cap V \neq \emptyset となる. \mathcal{B} := \{A \cap V \subset X \mid  V \in \mathbf{V} (x) \} とおく. \emptyset \notin \mathcal{B}であり, V, W \in \mathcal{B} ならば  V \cap W \in \mathcal{B}が成り立つ.なので, \langle \mathcal{B} \rangle := \{ V \subset X \mid ある  W \in \mathcal{B} が存在して  W \subset V\} と定めると, \langle \mathcal{B}\rangle はフィルターになる.特に,構成法から  A \in \langle \mathcal{B} \rangle かつ  \mathbf{V} (x)\subset \langle \mathcal{B} \rangle となるので, xに収束し  Aを含むフィルターの存在が言えた.

 \mathcal{F} xに収束し  Aを含むフィルターとする. \emptyset \notin \mathcal{F} なので, V, W \in \mathcal{F} に対して  V \cap W \neq \emptyset である.特に, \mathbf{V} (x) \subset \mathcal{F} なので,任意の  V \in \mathbf{V} (x) に対して  V \cap A \neq \emptyset となる.よって, x \in \overline{A} となる. \square

この命題と証明から,フィルターを使っていく上で重要な二つの要素が見えてくる.まず, A \in \mathcal{F} となるフィルターは  A に値をとる点列の類似と思える.そこで, X におけるフィルター  \mathcal{F} A \in \mathcal{F} を満たすとき,\mathcal{F} A 上のフィルターと呼ぶことにする.

次に,証明で現れた  \mathcal{B} はフィルターではないもののフィルターを生成することができる.このようなものを定義しておこう.

定義5(フィルター基)

集合  X に対して, Xの部分集合からなる空でない集合族 \mathcal{B}フィルター基であるとは,以下が成り立つことをいう:

(i)  \emptyset \notin \mathcal{B}

(ii)  V, W \in \mathcal{B} ならば,ある  U \in \mathcal{B} が存在して  U \subset V \cap W

フィルター \langle \mathcal{B} \rangle := \{ V \subset X \mid ある  W \in \mathcal{B} が存在して  W \subset V\}  \mathcal{B} で生成されるフィルターと呼ぶ.

 \mathcal{B} で生成されるフィルター  \langle \mathcal{B} \rangle x\in X に収束するとき,フィルター基  \mathcal{B}  x収束すると言う.

関数  f \colon X \to Y X におけるフィルター  \mathcal{F} に対して,
 \displaystyle
\qquad f(\mathcal{F}):=\{ f(A) \subset Y \mid A \in \mathcal{F} \}
 Y におけるフィルター基ではあるがフィルターとは限らない.一方, Y のフィルター  \mathcal{G} に対して,全ての  B \in \mathcal{G} f(X) \cap B \neq \emptyset となるならば,
 \displaystyle
\qquad f^{-1} (\mathcal{G}) := \{ f^{-1} (B) \subset X \mid B \in \mathcal{G} \}
 X におけるフィルターになる.

位相空間の連続性は収束という言葉で言えば随分直感的に言い換えることができる.

命題6

位相空間  X, Y と関数  f \colon X \to Y に対して, f x \in X で連続なことと, x に収束する  X における全てのフィルター  \mathcal{F} に対して,フィルター基  f(\mathcal{F}) f(x) に収束することが同値.

証明は省略. \square

つまり,連続な関数はフィルターの収束を保存するものである.

コンパクトとハウスドルフ

コンパクト性

フィルターは極限点を持つとは限らない.ギリギリまで細かいフィルターをしたものを極大フィルターと呼ぶ.

定義7(極大フィルター)

フィルター  \mathcal{F}極大フィルターであるとは,フィルター  \mathcal{G} に対して, \mathcal{F} \subset \mathcal{G} ならば  \mathcal{F} = \mathcal{G} が成り立つことを言う.
(つまり,極大フィルターとは自分より細かいフィルターが存在しないフィルターである.)

極大フィルターは具体的にどのようなものかイメージしにくい.それもそのはずで,極大フィルターの存在はZorn補題で示されるものだからである.

定理8

任意のフィルター  \mathcal{F} に対して, \mathcal{F} より細かい極大フィルターが必ず存在する.

証明はZorn補題を使う.  \square

さて,極大フィルターを使えば,コンパクト性が定義できる.

定義9(コンパクト)

位相空間  Xコンパクト であるとは,任意の極大フィルターが極限点を持つことである.

上の定理を使えば,コンパクトとは,フィルターを細かくすればある点に収束することと言える.これは,任意の点列は収束する部分列を持つと言う性質の類似だと捉えると良い.

チコノフの定理を証明するために,直積空間の定義を復習する.

定義10(直積空間)

位相空間の族  (X_i)_{i\in I} の直積集合  X := \prod_{i \in I} X_i直積空間であるとは, X の位相で全ての射影  \pi_i \colon X \to X_i が連続になる最弱の位相が  X に定まっていることである.

直積空間は深入りすると面倒なので,必要な性質を証明なしで述べる.

定理11

位相空間の族  (X_i)_{i\in I} とその直積空間  X := \prod_{i \in I} X_i に対して, Xにおけるフィルター  \mathcal{F} x \in X に収束することと,全ての  i \in I に対して, X_i におけるフィルター基  \pi_i (\mathcal{F}) x_i := \pi_i (x) に収束することが同値である.

Proof.前者が成り立てば後者が成り立つのは,射影  \pi_i連続写像だから当然である.逆が難しい. \square

補題12

集合  X, Y写像  f \colon X \to Y について, X上の極大フィルター  \mathcal{F} に対して, f(\mathcal{F} ) Y における極大フィルターとなる.

以上のことを認めれば,チコノフの定理は自明である.

定理13(チコノフの定理)

位相空間の族  (X_i)_{i\in I} とその直積空間  X := \prod_{i \in I} X_i を考える.全ての  X_i がコンパクトなら,直積空間  X もコンパクトである.

Proof. Xにおける極大フィルターを  \mathcal{F} とする.補題12により, \pi_i (\mathcal{F} ) X_i における極大イデアルである.  X_i がコンパクトであるから, \pi_i (\mathcal{F} ) はある点 x_i に収束する.よって,定理11により, \mathcal{F} \pi_i (x) = x_i となる  x \in X に収束する.以上により, X の極大イデアルは極限点を必ず持つから, X はコンパクトである. \square

ハウスドルフ性

ハウスドルフ性はフィルターを用いると以下のように定義できる.

定義(ハウスドルフ)

位相空間  Xハウスドルフであるとは, X における任意のフィルターが高々1つしか極限点を持たないことをいう.
(つまり,フィルターが2つ以上の極限点を持たない空間がハウスドルフ空間である.)

ハウスドルフ性自体も興味深いが,コンパクトや閉集合との関連でハウスドルフ性は重要である.以下ではイメージを重視した証明を述べるが,フィルターに慣れてきたら容易に厳密な証明に書き換えることができる.

命題14

位相空間  X を考える. Xはコンパクトとする.このとき, X の部分集合  A が閉ならば, A はコンパクトである.

Proof.A がコンパクトであることを示すためには, A の極大フィルター  \mathcal{F} A に極限点を持つことを言えば良い. X はコンパクトであるから, \mathcal{F} X における  A 上のフィルターと見れば極限点  x \in X を持つ. A が閉であるから,命題4により A 上のフィルターの極限点は  A に入る.以上により, A における極大イデアル A に極限点を持つため, A はコンパクトである. \square

命題15

位相空間  X を考える.  X はハウスドルフとする.このとき, Xの部分集合  A がコンパクトならば,  A は閉である. \square

Proof. A が閉であることを言うためには,命題4により, A上のフィルターの極限点が  Aに入っていることを言えば良い.あるフィルターの極限点はより細かい極大フィルターの極限点になるので,極大フィルターのみを考えれば良い. A 上の極大フィルター  \mathcal{F}  A がコンパクトであることから  A に極限点を持つ.しかし, X がハウスドルフであることから他には極限点はない.つまり, A 上のフィルターの極限点は必ず  A に入る.よって, A は閉である. \square

これらの命題を応用すれば,非常に面白いことが言える.その準備として,コンパクト集合の連続写像による像がコンパクトであることをみる.

命題16

位相空間  X, Y とその間の連続写像  f \colon X \to Y を考える. X の部分集合  A がコンパクトならば, f(A) はコンパクトである.

Proof. f(A) の極大フィルター  \mathcal{F} を考える. \mathcal{F} の引き戻し  f^{-1} (\mathcal{F} ) を含むような  A の極大フィルター  \mathcal{G} をとると, A はコンパクトなので, \mathcal{G} は極限点  x \in A を持つ. f が連続なので, f(\mathcal{G}) f(x) \in f(A) を極限点にもつ. \mathcal{F} f(A) の極大フィルターだったので, \mathcal{F} = f(\mathcal{G}) となり, \mathcal{F} は極限点を持つ.つまり, f(A) の極大フィルターは極限点を持つことが示せた.  \square

定理17

位相空間  X, Y とその間の連続写像  f \colon X \to Y を考える. f全単射で, X がコンパクト, Y がハウスドルフならば, f は位相同型写像である.

Proof. f^{-1}連続写像であること,つまり, X閉集合 Y閉集合に移すことを見れば良い. X閉集合  A をとると, X がコンパクトなので命題14より  A はコンパクトである. f連続写像だから,命題16より f(A) はコンパクトである. Y はハウスドルフだから,命題15より f(A) は閉である.よって, f^{-1}が連続であることが言えた. \square

位相空間

今回の記事の議論では,フィルターの収束だけで様々なことが言えた.フィルターの収束は近傍系から定義できる.そこで近傍系を一般化しても,収束だけで様々なことが議論できるということが想像できる.そのようなモチベーションで一般化したものが前位相空間である.

定義18(前位相空間

集合  X位相空間であるとは,各点  x \in X に対して、X の部分集合からなる空でない集合族  \mathbf{V} (x)が存在して以下が成り立つことをいう:

(i) すべての  V \in \mathbf{V} (x) に対して, x \in V;

(ii)  V \in \mathbf{V} (x) かつ  V \subset W ならば  W \in \mathbf{V} (x);

(iii)  V, W \in \mathbf{V} (x) ならば  V \cap W \in \mathbf{V} (x);

位相空間  X におけるフィルター  \mathcal{F} x収束するとは, \mathbf{V} (x) \subset \mathcal{F} が成り立つことをいう.
 \mathbf{V}フィルター場という.

つまり,収束を定める基準となるフィルターを各点に定めたものが前位相空間である.前位相空間においても,コンパクト性やハウスドルフ性を定義でき,これまでの議論は全く同様に行うことができる.

位相空間をさらに一般化した空間も存在する.しかし,これ以上一般化すると,位相空間とのズレが大きくなるので,前位相空間で議論する論文も非常に多い.

さて,前位相空間位相空間とは限らない.位相空間論で学ぶように,近傍系の性質(iv)が成り立つかどうかで,位相空間となるかが完全に決まるからである.この点をもう少し見てみよう.空間は,近傍系の他に開集合や閉集合,閉包作用素や開核作用素でも定義できるが,開集合と閉集合の公理は3つなのに対して,近傍系,閉包作用素,開核作用素の公理は4つであった.実はここに隠れた意味があるのである.

簡単のため,開集合の公理と閉包作用素の公理のみを復習する.

定義19(開集合)

集合  X に対して,部分集合の族  \mathfrak{D} 開集合族であるとは,以下が成り立つことをいう:

(i)  \emptyset \in \mathfrak{D} かつ  X \in \mathfrak{D};

(ii)  A, B \in \mathfrak{D} ならば  A \cap B \in \mathfrak{D};

(iii)  A_{\lambda} \in \mathfrak{D} ならば  \bigcup_{\lambda} A_{\lambda} \in \mathfrak{D}

定義20(閉包作用素

集合  X に対して,部分集合から部分集合への関数  \mathrm{Cl} \colon 2^X \to 2^X閉包作用素であるとは,以下が成り立つことをいう:

(i)  \mathrm{Cl} (\emptyset ) = \emptyset;

(ii) 任意の部分集合 A \subset X に対して,A \subset \mathrm{Cl} (A);

(iii) 任意の部分集合 A, B \subset X に対して,\mathrm{Cl}(A \cup B) = \mathrm{Cl} (A) \cup \mathrm{Cl} (B);

(iv) 任意の部分集合 A \subset X に対して, \mathrm{Cl} ( \mathrm{Cl} (A)) = \mathrm{Cl} (A);

さて,閉包作用素の公理(iv)を満たさないものを考える.

定義21(擬閉包作用素
集合  X に対して,部分集合から部分集合への関数  \mathrm{Cl} \colon 2^X \to 2^X擬閉包作用素であるとは,以下が成り立つことをいう:

(i)  \mathrm{Cl} (\emptyset ) = \emptyset;

(ii) 任意の部分集合 A \subset X に対して,A \subset \mathrm{Cl} (A);

(iii) 任意の部分集合 A, B \subset X に対して,\mathrm{Cl}(A \cup B) = \mathrm{Cl} (A) \cup \mathrm{Cl} (B);

近傍系と閉包作用素は以下の関係で結びついていた.
 \displaystyle
\qquad \mathrm{Cl} (A) = X \setminus  \{x \in X \mid X \setminus A \in \mathbf{V} (x) \} \\

\qquad \mathbf{V} (x) = \{ A \subset X \mid x \in X \setminus \mathrm{Cl} (X \setminus A) \}
実は,上の関係を使えばフィルター場と擬閉包作用素が1対1に対応しているのである.

定理22

集合  X に対して,フィルター場と擬閉包作用素が1対1に対応する.

位相のときの証明を(iv)を使うかどうかに注意すれば良い.

よって,前位相空間では閉包が閉とは限らない.これが前位相空間位相空間と違う部分である.

参考文献

フィルターを使った議論に興味を持たれた方には.
柴田敏男『集合と位相空間』(共立出版
N. Bourbaki, "General Topology"
をオススメする.私が書いたpdfでよければ,
tetobourbaki.hatenablog.com
からダウンロードできる.正直なところあまり正確に書けていないが,省略した証明は書いたはずである.(定義が少し違うものがあるので注意せよ.)

収束空間や前位相空間について書かれている本はほとんどないが,
R. Beattie, H, P. Butzmann, "Convergence Structures and Applications to Functional Analysis"
が良書だと思う.uniさんの素晴らしいpdf
unununum.hatenablog.com
も参考にしていただきたい.あと,どこかの大学のMaster論文
Raed Juma Hassan Shqair, "On The Theory of Convergence Spaces"
も検索すれば出てくる.基本的なところから書いていて読みやすいし,新しい結果も踏まえて書かれていて,参考文献も役に立つ.

収束空間に関しては,今後,詳しい内容を書いて何らかの形で発表したいと思っています.

数学のpdfを書いています

書きながら公開している数学のpdfをブログでも見れるようにしようと思います。

微分ガロア理論入門
微分ガロア理論をほとんど前提知識を仮定せず解説しています。
微分ガロア理論入門 - Google ドライブ

微分ガロア群を定義したところまで進んでいます。次は線形代数群の性質を使って、微分ガロア群の性質を考えていきます。

・フィルターと一様構造
『位相のこころ』や『森毅を主題とする変奏曲』に書いていることを理解するために、自分なりにまとめたメモです。一通り理解できたと自分なりに満足したところで、他の人にも読めるように書き直しをしようと思っています。
filter.pdf - Google ドライブ

・リンデレーエフの注意について
岡本和夫『パンルヴェ方程式』のゼミをスカイプでやっているのですが、その時にちゃんと説明できなかったことを自分なりにまとめたものです。
L.pdf - Google ドライブ


tetobourbaki.hatenablog.com

新入生に勧める数学書2018

ツイッターで大学新入生にオススメの数学書を、ハッシュタグ #新入生に勧める数学書2018 で募集しました。


皆さんのオススメの本を抜粋して紹介します。

参加してくださった皆様、ありがとうございました。
(ツイートの掲載は許可をとっています。了承していただいた皆さん、ありがとうございました。)

はじめに

こんな企画を始めたものの、知らない人が勧める本にすぐに飛びつくのではなく、著名な数学者が勧める本をまずは本屋で見て欲しいと思います。
それを知るには、ちょうど、毎年この時期に出る『数学ガイダンス2018』がオススメです。
数学者が勧める本の紹介や、数学の各分野の紹介、大学での勉強法などがまとめられています。
(とは言え、ツイッターで紹介してくださった多くの本は、この本でも紹介されています。)

あと、個人的な意見を少し。
大学で使う教科書には、4年やそれ以上の長い期間使い続けることができるものがあります。
いわゆる名著と呼ばれる本や大学で勧められる本はそういうものが多いです。
最初は、自分で理解できるように平易に書かれた簡単な本を買いがちですが、そういう本は半年もすれば必要なくなることも多いです。
なので、是非とも長年読み続けられてきた名著を、最初は理解できなくても、買っておいて折にふれてチャレンジして欲しいです。
これは難しい本を読めと言っているのではないです。
また、もちろん自分で理解できる本から始めることも大事ですし推奨しますが、分かりやすさという基準では捕らえられない数学書の価値も知って欲しいところです。

あと、大学の図書館を有効活用して欲しいですね。
本を買うときは、本屋や図書館でちゃんと自分で見てからにしましょう。

一般

高校数学と大学数学ではギャップを感じることが多いと思います。そのギャップを埋めてくれる本や、数学の面白さを伝える本を見ていきましょう。
数学ガール シリーズ


数学ガールで数学が好きになった人は多いようです。大学生でも読んだことがなければ是非とも読んで欲しいです。
たくさん本が出ていて何を買えばいいのか分からない場合は、以下のページを参考にしてください。

オイラーの贈り物

志学数学


この本は、本当にオススメです。
大学生に限らず、数学者や研究者に憧れている人や数学に興味がある人は是非とも読んでみてください。

数学の大統一に挑む


数学の最先端を知ることができる本はなかなかありません。
いろんな概念を出来るだけ易しく解説しているので、すべて読み通すのは難しいかもしれませんが、是非とも手にとって読んで欲しい本です。

微積

微積分は名著と呼ばれる和書が多いです。
以下の高木、小平、杉浦の三冊のうち気に入ったものを買っておいて損はしないと思います。

解析概論


「取り敢えず、高木貞治さんの解析概論を読んでおけば微積の授業で困る事は無くなるはずです!」
という意見もありました。
著者の高木貞治は近代日本数学の父とも呼ばれています。
昔から長年読まれ続けてきた本であり、一番有名な数学書だと思います。
実はそれほど難しいわけでもないですが、新しい本に比べると書き方の面で読みづらいかもしれません。

解析入門I II (杉浦光夫)



私が勉強したのもこの本でした。
難しいところがたくさんありますが、普通の本には書いていないけど大事なことがたくさん書いてあります。
数学の力をつけたい人や、授業では分からなかったことを調べるのにもオススメです。

解析入門I II小平邦彦


小平先生はフィールズ賞をとった数学者です。
丁寧に書かれていて、分かりやすさも重視されている本です。

上の三冊が有名ですが、難しい場合には以下の本を紹介している方がいました。
解析入門 (ラング)



この本自体は、私はちゃんと読んだことがありませんが、ラング先生はたくさんの本を書かれていて、私は"Algebra"をよく読みます。
数学を続けていけば、この本ではなくてもラング先生の本を読むことになるのではないでしょうか。

他にもたくさんの本が紹介されていました。
解析入門1-6 (松坂和夫)
https://twitter.com/Annihilated_Uni/status/971243338669215745

微分積分(黒田成俊)

対話 微分積分学(笠原晧司)


解析学入門(福井常孝/上村外茂男/入江昭二/宮寺功/前原昭二/境正一郎)

解析入門 (田島一郎)

イプシロン-デルタ (田島一郎)



私は読んだことがないのですが、この本は有名ですね。
イプシロンデルタ論法は最近授業で扱われないことも多いそうですが、早いうちに理解できると楽しいです。
(はじめは難しく感じるかもしれませんが、実は難しくないので、数学を勉強しているうちに絶対に理解できます。分からなくても落ち込む必要ないと思います。)

線形代数

線形代数は本当にたくさんの本があります。
基本的には授業で紹介される本を使うと良いと思いますが、それでは分からないと思った時には、評判のいい本や自分の気に入った本を使うと良いでしょう。
線形代数入門(斎藤正彦)



線形代数(佐武一郎)



線形代数(長谷川浩司

線形代数(三宅敏恒)

副読本的な本も紹介しておきます。
はじめてのリー群
はじめてのリー環


線形代数は本当にいろんな分野で役に立ちます。
リー群やリー環はその典型例で、これ自体が非常に大切な概念です。
これらの本は線形代数を復習しながら、その使い方も分かるように書かれています。

2次行列のすべて


今の高校生は高校で行列を学びませんが、この本は高校の行列で教えられていたことに加えて、大学の線形代数で勉強することを2次行列に限定して一通り勉強できるようになっています。

代数学(整数)

代数学は大学に入ったばかりでは授業がないですが、興味がある人が多いと思います。整数の本もここで紹介しておきます。

数論への招待

初等整数論講義

代数学(雪江 明彦)

みんな大好きガロアの本も紹介されていました。

ガロアと方程式

代数と数論の基礎
代数方程式とガロア理論

幾何

大学に入ったばかりでは幾何の授業があまりないため、それほど幾何の本は紹介されていませんでした。
しかし、小林昭七先生の以下の本を紹介する人は多かったです。

曲線と曲面の微分幾何


この本は具体例が豊富で非常に分かりやすいです。
抽象的な幾何でつまずいている人や幾何に興味がある人はこの本でトレーニングするといいと思います。

微分形式の幾何学


この本は私からもオススメします。
最初、幾何で困ったらこの本を読んでいました、この本以上に頼れる本はないです。
入学したばかりではピンとこないかも知れませんが、頭の片隅に置いておいて欲しいです。

集合と位相

数学科で勉強する集合や位相といった分野は、高校とのギャップが最も大きい分野だと思います。

集合・位相入門


位相と言えば真っ先にあがる本です。
私もこれで勉強しました。
分かりやすく書いているわけではないですが、丁寧に書かれていて、ゆっくり読めばちゃんと分かるようになっています。

集合と位相



この本は分かりやすいとすごく評判の本ですね。
誰にも勧められる本はこれだと思います。

トポロジー入門

この本も非常に分かりやすいと評判です。
授業や他の本で挫折した時には是非この本を手にとって欲しいです。

みなさんのアドバイス

本に限らずアドバイスを書いてくださった方もたくさんいましたので、まとめておきます。


その他

上で紹介した枠組みには入らないような本やちょっと変わった本の紹介もありました。いい本ばかりなのでまとめておきます。
最近、妹がグレブナー基底に興味を持ち始めたのだが。


カクヨムで連載中の小説の書籍化です。
少しふざけた本のように見えるかもしれませんが、数学の本として本当にいい本だと思います。(私も持っています。)
連載記事は以下で無料で見ることもできます。書籍版は書き下ろしの短編が入っています。
kakuyomu.jp

本質から理解する数学的手法


この本は知らなかったですが、目次を見たところ、まさに新入生にぴったりの本ですね。

数学文章作法 基礎編


数学ガールの著者による数学の文章の書き方の本です。
この本も非常にいいです。

30講シリーズ


このシリーズを読んで理解できたと言っている人を普段もよく見ます。
授業が分からなくなった時には、このシリーズの本を読むことをお勧めします。

マセマシリーズ


問題を解きながら重要な概念を理解していくことができます。
ちゃんとした教科書を買った上でこの本で訓練するといいと思います。

数理解析学概論


大学の数学で勉強する様々な分野がこれ一冊で勉強できます。
とは言え、この本の最大の特徴は解析学の説明です。
解析学微分方程式への応用は大学の数学でもなかなかたどり着けないのですが、現代数学で非常に重要な部分を占めています。
それを知るには最適な本だと思います。

数理論理学


この本は僕が数学を好きになったきっかけの本でもあってオススメしたいところです。
完全性定理や不完全性定理などは聞いたことがあるかもしれませんが、そのようなことも書いています。

非線形ダイナミクスとカオス


力学系の本の中で最も易しく書かれている本だと思います。
力学系自体も面白いですし、解析がどのように応用されるかを知っておくと、発展的な内容を勉強するモチベーションにもなると思います。

Lawvereの書籍
https://twitter.com/WatanabeYohei/status/972112043930140672
圏論を知っていると、いろんな分野のつながりが良くわかるようになります。
例をあまり知っていない状態で圏論だけを勉強してもなかなか分かるようにはなりませんが、他の数学と一緒に少しずつ勉強していくと良いと思います。
最近は入門書やネットで読める易しい解説も多く、勉強しやすいと思います。

カラー図解 数学事典


これも新入生にオススメの本です。
少し高価なので、合格祝いに買ってもらいましょう。

LaTeX2ε 美文書作成入門

LaTeXを使えば、数式が綺麗に書けます。
理系ならいつかこの本を買うことになると思います。

数学女子


数学科の雰囲気が分かる漫画です。

q類似とテイラー展開(可積分系入門)

今回は q類似を導入して,多項式テイラー展開 q類似を解説します.

(一応,以下の記事の続きですが,この記事だけで独立して読むことができます.)
tetobourbaki.hatenablog.com

q類似とは

 q 1以外の実数としておきます. q 類似とは何らかの数学的対象の類似物です.例えば,「XはYの  q類似である」というのは,「Xは qを含む式であり,q1に近づけるとXはYになる」ことを意味します。Yにパラメータ qを入れて, q = 1のときがYで,Yを q \neq 1以外のときにも一般化したものだと思ってもいいでしょう。

例として,導関数 q類似を考えましょう.まず, f導関数
\displaystyle
\qquad f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} =  \lim_{h \to 0} \frac{f(x+h) - f(x)}{(x+h) - x}
と定義されました.そこで, q類似を
\displaystyle
\qquad D_q f(x) =  \frac{f(qx) - f(x)}{(q-1)x} = \frac{f(qx) - f(x)}{qx - x}
と定義します. D_q f(x) f(x) q導関数と言います. f(x)微分可能なとき,
 \displaystyle
f'(x) = \lim_{q \to 1} D_q f(x)
が成り立つことが分かります.言い忘れていましたが,一つのものの q類似を何通りも考えることができますが,面白いのはだいたい一つになるようです.

以下の公式は簡単に示すことができます.

 q導関数の公式
 f, gを関数とする.以下が成り立つ.
 \displaystyle
\qquad D_q (f(x) + g(x) ) =  D_q f(x) + D_q g(x)
 \displaystyle
\qquad D_q (f(x)g(x) ) = f(x) D_q g(x) +  D_q f(x) g(qx)
ライプニッツ則に対応するものが微妙に非対称ですが, q 1に近づけると普通のライプニッツ則になるのでこれ自体もライプニッツ則の  q類似になっています.

 q導関数の分母と分子に注目すると,新たに記号を用意すると良いことが分かります. f q差分
 \displaystyle
\qquad d_q f (x) = f(qx) - f(x)
と定義します.すると
 \displaystyle
\qquad D_q f(x) = \frac{d_q f (x)}{d_q x}
と書くことができます.

様々なq類似

さて,今回の目標はテイラー展開です.テイラー展開
 \displaystyle
\qquad f(x) = \sum_{n=0}^{\infty} f^{(n)} (a)\frac{(x-a)^n}{n!}
 q類似を考えましょう.そのためにはテイラー展開に現れるものの  q類似を考えることが必要です. q導関数はすでに考えたので,階乗  n! q類似が必要です.これだけでも不十分で, (x-a)^n q類似も考えないといけないということが分かります.

まず階乗を考えます.しかしそのためには整数  n q類似を考える必要があります. そのヒントとして, (x^n)' = n x^{n-1}q類似ではどうなるかを見てみます.
 \displaystyle 
\qquad D_q x^n = \frac{(qx)^n - x^n}{(q -1) x} = \frac{q^n - 1}{q - 1} x^{n-1}
この式を参考にして,整数  n q類似を
 \displaystyle
\qquad [n]_q = \frac{q^n - 1}{q - 1} = q^{n-1} + q^{n-2} + \dots + q + 1
と定義します. \lim_{q \to 1} [n ]_q = n となるのでこれでいいでしょう.これを使えば,階乗の  q類似は
 \displaystyle
\qquad [ n ]_q ! = 
\left\{ 
\begin{matrix}
1 & \text{if} &n = 0 \\
[n ]_q \times [n-1 ]_q \times \dots [1 ]_q & \text{if}& n = 1,2, \dots
\end{matrix}
\right.
と定めることができます.

さて,次は  (x-a)^nについて考えましょう.このままでも良さそうな気がするので,どうしてこれの  q類似まで考える必要があるのかを説明します.まず, D_q x^n = [n ]_q x^{n-1} が成り立つのでした.(そうなるように整数の  q類似を定義した.)なので, D_q (x-a)^n = [n ]_q (x-a)^{n-1} が成り立つことを期待するのですが,一般には成り立ちません.成り立たないことを,具体例 (x-1)^2で見ましょう.
 \displaystyle
\qquad D_q (x - 1)^2 - [2]_q (x-1) =  D_q (x^2 - 2x - 1) - [2]_q (x-1) \\
\qquad \qquad \qquad \qquad \qquad \quad = D_q x^2 - 2 D_q x - [2]_q x+ [2 ]_q \\
\qquad \qquad \qquad \qquad \qquad \quad = [2 ]_q x - 2 [1]_q - [2]_q x+ [2 ]_q \\
\qquad \qquad \qquad \qquad \qquad \quad =  - 2 + \frac{q^2 - 1}{q - 1} \\
\qquad \qquad \qquad \qquad \qquad \quad =  q -1 \\ 
\qquad \qquad \qquad \qquad \qquad \quad \neq 0
このようになってしまいます.そこで,天下り的ですが, (x-a)^n q類似を
 \displaystyle
\qquad (x-a)^n_q = 
\left\{ 
\begin{matrix}
1 & \text{if} &n = 0 \\
(x-a) \times (x-qa) \times \dots (x-q^{n-1}a) & \text{if}& n = 1,2, \dots
\end{matrix}
\right.
と定義しましょう.このとき,以下が成り立ちます.

命題
 n \geq 1に対して,
 \displaystyle
\qquad D_q (x-a)_q^n = [ n]_q (x - a )_q^{n-1}
証明.数学的帰納法で示す. n = 1で成り立つのは明らか.
 n = kで成り立つと仮定する. (x - a)_q^{k+1} = (x-a)_q^{k}  (x - q^ka)  q微分すると,ライプニッツ則により,
 \displaystyle
\qquad D_q (x - a)_q^{k+1} = (x-a)_q^{k}  D_q (x - q^ka) + D_q (q-a)_q^{k}  (qx - q^k a) \\
\qquad \qquad \qquad \quad  = (x-a)_q^{k} +  [ k]_q (x - a )_q^{k-1} q(x - q^{k-1} a) \\
\qquad \qquad \qquad \quad   =  (x-a)_q^{k} +  q[ k]_q (x - a )_q^{k}\\
\qquad \qquad \qquad \quad   = (1 +  q[ k]_q) (x - a )_q^{k}\\
\qquad \qquad \qquad \quad   = (x - a )_q^{k+1}\\
よって証明が終わった. \square

多項式テイラー展開

さて,テイラー展開 q類似を証明しよう.証明するには以下の重要な定理を示せばよい.(これは普通の多項式テイラー展開の証明にも使える.)

定理
 a複素数 D多項式の線形写像とする.
また,多項式の列  \{P_0 (x), P_1 (x) , P_2 (x), \dots, \}は以下を満たすとする:
(a)  P_0 (x) = 1かつ  P_k (a) = 0 ( k \geq 1)
(b)  \mathrm{deg} P_k = k
(c)  DP_k (x) = P_{k-1} (x) ( k \geq 1) かつ  D(1) = 0
このとき,任意の N多項式  f(x)に対して,以下のテイラー展開の公式が成り立つ:
 \displaystyle
\quad f(x) = \sum_{n=0}^N (D^n f) (a) P_n (x)
証明. V N次以下の多項式がなすベクトル空間とすると,次元は  N+1である.仮定(b)により, \{P_1 (x), \dots, P_N (x) \}は基底を成す.そこで, f(x)
 \displaystyle
\quad f(x) = \sum_{k=0}^N c_k P_k (x)
と書けたとする. x = aとおくと,仮定(a)により c_0 = aとなる. f D n回作用させると,仮定(b)と(c)により,
 \displaystyle
\quad (D^n f) (x) = \sum_{k=n}^N c_k D^n P_k (x) = c_k P_{k-n} (x)
この式に  x = aを代入すると(a)により,

c_n = (D^n f)(a)
を得る.よって定理が証明された. \square

よって,準備が終わった. P_k
 \displaystyle
\quad P_k (x) = \frac{(x- a)_q^k}{ [k ]_q }
とおくと,定理の仮定を満たすことが簡単に分かる.よって,以下を得る.

定理(多項式 qテイラー展開
任意の N多項式  f(x)複素数  a に対して,以下が成り立つ.
 \displaystyle
\quad f(x) = \sum_{n=0}^N (D_q^n f) (a)  \frac{(x- a)_q^n}{ [n ]_q }

まとめ

 q 類似を導入しました.普段見ている様々な公式が  q類似でも成り立つということは,普段見ている世界が  q = 1の場合にすぎないと言うこともできます.次回は,前回考えた整数の分割と q類似が関係しているということを見ていきます.

参考文献
P. Cheng, V. Kac, "Quantum Calculus", Springer

整数の分割とヤング図形(可積分系入門)

この記事の続きですが,本記事だけで楽しめます.
tetobourbaki.hatenablog.com
当分は可積分理論に現れる基本的な手法を見ていきます.

組み合わせ問題

組み合わせ問題は一般に解くことが難しいです.組み合わせ問題の面白さというのは、全ての組み合わせを数えれば原理的には答えを求めることができるものの,それは計算機を使ってすら難しいところでしょう.

以下の動画を見れば,簡単そうな問題でも数え上げると大変なことになることが分かります.

次の動画では,簡単に計算するソフトを紹介しています.数学の力を使えばこんなことが可能になるのですね.

今回はこの問題ではなく、整数の分割を取り上げます。

整数の分割

整数の分割とは,与えられた自然数自然数の和で書くことです.
例えば,3
 \displaystyle
3 = 1+1+1\\
3 = 2+1\\
3 = 3
 3通りの分割法があります.

もう少し正確に定義しましょう.和の順番を変えても同じ分割だと考えることにするので,和を書くときは大きい数字の順に並べることにしましょう.すると以下のように定義ができます.

定義
自然数  N分割とは自然数の列  a_1 \geq a_2 \geq \dots \geq a_nを用いて書ける
 \displaystyle
N = a_1 + a_2 +  \dots + a_n
のことを言う.このときの  a_i和因子という.

4 の分割を並べてみると,
 
4 = 1 + 1 + 1 + 1\\
4 = 2 + 1 + 1 \\
4 = 2 + 2 \\
4 = 3 + 1\\
4 = 4
 5通りがある.
 5の分割を並べてみると,

5 = 1 + 1 + 1 + 1 + 1\\
5 = 2 + 1 + 1 + 1\\
5 = 2 + 2 + 1 \\
5 = 3 + 1 + 1\\
5 = 3 + 2\\
5 = 4 + 1\\
5 = 5
7通りがある.
分割の数を分割数という. Nの分割数を  p(N)と書く.
ここまでの例では分割数はそれほど大きくならないようにも見える.しかし,分割数は爆発的に大きくなる.
 p(6) = 11であるが,分割数が 100を越えるのは N = 13の時で p(13) = 101である. 100の分割数は  p(100) = 190,569,292でありずいぶん大きい. 1000の分割数になるととてつもなく大きくて, 31桁の自然数となる.

分割数が面白くなるのは、単に全ての分割を考えるのではなく、分割に条件をつけた場合の分割数である.(ラマヌジャンはこの分野でたくさん業績があるらしい.)例えば,全ての和因子が  2以上という条件をつけると,上に列挙したものをみれば, 5の分割数は 2となり非常に小さくなることが分かる.この方向で面白く深い問題を考えるのは次回以降の記事に回すことにして,次にヤング図形という便利な道具を導入しよう.

ヤング図形

ヤング図形とは以下のような箱の集まりでできる図形のことである.2つ例を挙げる.
 \qquad f:id:tetobourbaki:20180220223648p:plain

 \qquad f:id:tetobourbaki:20180220223651p:plain
適当に箱を並べたのではなくルールがある. i行目に並べた箱の個数を  b_iと表すことにすると, b_1 \geq b_2 \geq \dots b_nが成り立つ必要がある.つまり下の行は上の行より多くの箱を並べてはダメだということである.最初の例では,

b_1 = 3, \quad b_2 = 1, \quad b_3 = 1, \quad b_4 = 1
であり, 2番目の例では

b_1 = 4, \quad b_2 = 2, \quad b_3 = 1
となっている.ヤング図形のルールを見れば分かるように,ヤング図形は整数の分割を表している.最初の例は  6の分割  3 + 1 + 1 + 1を表しており, 2番目の例は 7の分割 4 + 3 + 1を表している.数の分割とヤング図形は一対一に対応していることが分かる.

ヤング図形を線対称にひっくり返したものを共役という.(線は左上から右下への斜めの線にとる.)
言葉では分かりにくいので,例で説明する.上で挙げた最初の例とその共役を並べると
 \qquad f:id:tetobourbaki:20180220223648p:plain  \qquad f:id:tetobourbaki:20180220225159p:plain \qquad f:id:tetobourbaki:20180220225008p:plain
である. 2番目の例とその共役を並べると,
\qquad f:id:tetobourbaki:20180220223651p:plain  \qquad f:id:tetobourbaki:20180220225159p:plain  \qquad f:id:tetobourbaki:20180220225515p:plain
である.ヤング図形の共役はやはりヤング図形になっていることが分かる.つまり,分割をヤング図形と考えて,その共役を取ることで新しい共役を得ることができる.この操作はヤング図形を使わなくても定義できるものの,ヤング図形を使うとイメージが湧く.

応用

行の個数が  m個以下のヤング図形を考えよう.これは和因子の個数が  m個以下になる分割を考えていることになる.一方,その共役をとると,「行の個数が  m個以下」のヤング図形の共役は「それぞれの行の箱の数が  m個以下」のヤング図形になる.これは全ての和因子が m以下の分割に対応する.このことを踏まえると以下の定理が成り立つ.

定理
自然数  Nに対して,和因子の個数が  m個以下になる  Nの分割数と,全ての和因子が m以下の  Nの分割数は等しい.
このことを  N = 5, m = 3で確認しよう.
和因子の個数が  3個以下になる  5の分割は

5 = 2 + 2 + 1 \\
5 = 3 + 1 + 1\\
5 = 3 + 2\\
5 = 4 + 1\\
5 = 5
 5個である.一方,全ての和因子が 3以下の  Nの分割

5 = 1 + 1 + 1 + 1 + 1\\
5 = 2 + 1 + 1 + 1\\
5 = 2 + 2 + 1 \\
5 = 3 + 1 + 1\\
5 = 3 + 2\\
 5個であり,確かに定理が成り立つ.

共役を使えば色々定理が作れそうである.

まとめ

今回は整数の分割を通して,ヤング図形を導入しました.ヤング図形は可積分理論の様々な場面で現れますが,それは整数の分割を表すと覚えておくと,損はないでしょう.

次回はq類似とかqアナローグとか呼ばれるものを導入します.これも可積分理論でよく使われるものですが,整数の分割とも関係の深い分野です.

続き
tetobourbaki.hatenablog.com